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Abstract
We investigate the problem of designing metamaterial structures which operate
at very low frequencies. As an example, we consider the case of a DC magnetic
cloak, which requires a variable, anisotropic magnetic permeability with both
paramagnetic and diamagnetic components. We show that a structure based on
superconducting components is the key to diamagnetism at low frequencies, and
present a metamaterial design which meets the requirements of the cloak.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A new class of electromagnetic materials, metamaterials, has recently been the centre of
much attention. Just as conventional materials owe their properties to the average response
of millions of individual atoms and molecules, so the response of a metamaterial is dictated by
microstructure carefully engineered on a scale much less than the wavelength. The additional
design flexibility has led to the realization of properties not found in nature, such as negative
refraction [1] and to highly anisotropic properties that can be exploited to control and direct
radiation. Recent papers have described the cloaking of objects from microwaves using
metamaterials [2–4]. The subject of metamaterials has been reviewed in several papers [5–7].

All of these applications have been realized at microwave frequencies and above. In this
paper we examine the challenges of creating metamaterials to operate at near-zero frequencies,
and as an example we consider the problem of cloaking an object from a DC magnetic field so
that an object contained in the cloak experiences zero field, but outside the cloak the magnetic
field is undisturbed. Theory [3] gives the recipe for such a cloak and requires that

μr = R2

R2 − R1

(r − R1)
2

r 2
, μθ = R2

R2 − R1
, μφ = R2

R2 − R1
, (1)

where the components of the permeability tensor μ are diagonal in spherical polar coordinates;
R1 is the radius of the cloaked region while R2 is the outer radius of the cloak. Had we also
wished to screen out electric fields, we would additionally require

εr = R2

R2 − R1

(r − R1)
2

r 2
, εθ = R2

R2 − R1
, εφ = R2

R2 − R1
, (2)
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where ε is the electrical permittivity tensor. Here we concentrate on magnetic screening for
which ε is of course irrelevant for static fields.

Equation (1) demonstrates a characteristic of all cloaks: components of μ in the direction
of compression of the cloak (the radial direction in this example) are decreased, whereas
components in orthogonal directions are increased:

μr < 1, μθ = μφ > 1. (3)

A permeability of less than one presents particular problems at zero frequency for the following
reason. There is a general requirement that the group velocity should not exceed the velocity
of light in free space,

vg =
(

dk

dω

)−1

=
(

d

dω

ω
√

εμ

c0

)−1

= c0

(√
εμ + ω

d
√

εμ

dω

)−1

< c0. (4)

For a wave propagating perpendicular to the radius with magnetic component of the field
aligned with the radius, this amounts to

√
εθμr + ω

d
√

εθμr

dω
> 1. (5)

If we require μr < 1, then either we must also require

εθ > μ−1
r (6)

or the metamaterial must be dispersive. The latter possibility is not available to us at ω = 0
because of the factor of ω prefacing the second dispersive term in (5). Hence, any metamaterial
designed to screen magnetism for static fields will inevitably have a large positive electrical
response.

Next we must consider the issue of diamagnetism at ω = 0. Materials magnetize either
because electron spins align themselves with the field, giving rise to paramagnetic polarization
with μ > 1, or by supporting induced internal currents that oppose the applied field and
thus give rise to diamagnetism with μ < 1. We are therefore inevitably led to the use of
superconductors (or at least very good conductors) which are able to sustain the constant
induced currents required for the desired low-frequency response.

It is often remarked that superconductors behave like perfect diamagnets and can be
described as having μ = 0. However, this description is erroneous. More correctly, at least at
the level of the London equations, a superconductor should be described as a lossless plasma
with

ε = 1 − ω2
p

ω2
, μ = 1. (7)

The divergence at zero frequency as ω−2 distinguishes it from a perfect conductor and ensures
that the fields inside the superconductor are not zero but die off exponentially, as can be deduced
by solving Maxwell’s equations for the complex wavevector,

lim
ω→0

k = lim
ω→0

ω

c0

√
εμ = i

ωp

c0
= i

1

�L
(8)

where �L is the London penetration depth.
However, cutting up a superconductor into pieces to make a metamaterial gives quite

different properties, as we shall see. We shall show how to exploit them to construct
diamagnetic metamaterials with a high degree of anisotropy.

Finally, we comment that we have not found a way to make metamaterials with

lim
ω→0

ε < 1. (9)

This would require a magnetic ‘current’ of circulating magnetic poles. Since magnetic poles
do not exist as far as we know we have to conclude that it is impossible to realize (9).
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Figure 1. A lattice of superconducting cubes.

(a) (b)

Figure 2. A slice through the superconducting cube structure subjected to uniform (a) electric and
(b) magnetic fields. The dotted lines in (a) represent the D field in the region where the E field is
zero. The thicker unbroken lines marked with arrows denote the integral paths (used for averaging
E and H), while the dashed lines perpendicular to these show a section through the integration
surfaces (used for averaging D and B).

2. Lattice of cubes

We begin by investigating the structure illustrated in figure 1: solid cubes of superconducting
material are arranged on a simple cubic lattice. In the limit where the cube size d approaches
the lattice constant l, we can obtain an estimate for the effective permittivity and permeability.

We first consider the case of an electric field applied parallel to one of the cube edges.
The E field is then largely confined to the gaps between those faces perpendicular to the field
orientation, as shown in figure 2(a). To extract the effective permittivity, we need an averaging
procedure; we follow Pendry et al [8] by using a line integral for averaging E and a surface
integral for D. This method has been reviewed in detail by Smith and Pendry [9]. Figure 2(a)
shows the relevant line and surface.

Assuming that the field is uniform (of strength D0/ε0) in the gaps between the faces, we
obtain the averaged fields

ε0 Ē = 1

l
(l − d)D0 (10)

3



J. Phys.: Condens. Matter 19 (2007) 076208 B Wood and J B Pendry

and

D̄ = d2

l2
D0. (11)

We define the effective permittivity using the ratio of these quantities:

εeff = D̄

ε0 Ē
= d2

l(l − d)
. (12)

The method for extracting the effective permeability is very similar. We consider a magnetic
field applied in the direction of one of the cube edges. This time, the field is confined to the gaps
between those faces parallel to the field direction, as shown in figure 2(b). We take the average
of H along a line in one of these gaps, and the average of B over a surface perpendicular to
this line. As with the electric field, we make the approximation that the field is uniform in the
relevant region; taking the magnetic induction to be B0, we have

μ0 H̄ = B0,

B̄ = l2 − d2

l2
B0.

(13)

This gives us an effective magnetic permeability

μeff = B̄

μ0 H̄
= l2 − d2

l2
. (14)

We expect (12) and (14) to be more accurate as d approaches l; our assumption that the fields
are entirely confined to the gaps and uniform within them then becomes more realistic.

The model predicts that 0 < μeff < 1 and εeff > 1. We should ensure that these parameters
combine to give a predicted speed of light in our metamaterial which does not exceed c0. The
phase velocity (which is equal to the group velocity when ω = 0) is given by

vph = c0√
εeffμeff

= c0

√
l3

d2(l + d)
, (15)

which is less than c0 for d > 0.755l. In the limit d → l, the velocity tends to c0/
√

2.
We can test these predictions by running numerical simulations. Our approach here is to

calculate the dispersion relation for the infinite metamaterial. To this end, we take a unit cell
(containing a single cube) and apply periodic boundary conditions with a specific phase shift
across the cell in one or more directions; for example, if the phase shift in the x direction is φx

then all the field components must satisfy the condition

f (r + lx̂) = exp(iφx) f (r). (16)

The phase shift φx is therefore naturally associated with the Bloch wavevector kx = φx/ l. We
use a commercial solver package to determine the eigenfrequencies of the system for a range of
phase shifts; this gives us the band structure of our metamaterial. Figure 3 shows an example.

The gradient of the dispersion relation at ω = 0 for this particular configuration
corresponds to a group velocity of 0.768c0. This is less than the value predicted by (15);
however, as we make the cubes larger, our approximations get better and the group velocity
approaches the predicted limiting value of c0/

√
2 (see table 1).

We cannot extract εeff and μeff directly from the dispersion relation, but this result gives us
confidence that the predictions in (12) and (14) are reasonably accurate.

We have therefore established that the lattice of superconducting cubes can provide us
with an effective permeability in the desired range. However, this system fails to meet our
other criterion: that the permeability be anisotropic. We will address this shortcoming in the
next section.
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Figure 3. The dispersion relation for the system of superconducting cubes with l = 10 and
d = 8 mm.

Table 1. Phase velocities calculated from the dispersion relation for superconducting cube
structures with lattice constant l = 10 mm and a range of cube lengths d.

d (mm) Phase velocity (units of c0)

8 0.768
9 0.734
9.5 0.719
9.8 0.711
d → l 0.707

3. Lattice of plates

One way to make the system anisotropic is to flatten the cubes so that they become plates. If the
plates are very thin, there will be no appreciable electric response in the direction perpendicular
to the plates; we can therefore assume that ε⊥ = 1. Parallel to the plates, we expect an electric
response similar to the cubes, though weaker in magnitude. For the magnetic response, the
situation is reversed; we expect little response to a field parallel to the plates, and a weakened
diamagnetic effect when the field is normal to them.

Once again, numerical simulations allow us to put these predictions to the test. The
lower symmetry of the lattice of plates means that modes which were degenerate in the cube
system are now distinct in energy, and provide us with more information; starting only with the
assumption that ε⊥ = 1, we can directly obtain μ‖, ε‖ and μ⊥ from the band structure, which
we calculate as before. An example is shown in figure 4.

When the wavevector is normal to the plates, there are two degenerate modes with phase
velocity c0/

√
ε‖μ‖. This can be seen in the rightmost quadrant of figure 4. The degeneracy

is lifted when the wavevector lies in the plane of the plates. In the leftmost quadrant of the
figure, the wavevector lies parallel to one set of the plate edges; the phase velocity is then either
c0/

√
ε‖μ⊥ or c0/

√
ε⊥μ‖, depending on the polarization. With the assumption that ε⊥ = 1,

measuring these three phase velocities gives us all the information necessary to determine the
three unknowns μ‖, ε‖ and μ⊥. In table 2 we present effective medium parameters calculated
in this way.
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Figure 4. The dispersion relation for the lattice of superconducting plates. The lattice constant l is
10 mm; the plates are 8 mm wide and 0.5 mm thick. The z axis is normal to the plates; the sides of
the plate are aligned with the x and y axes.

Table 2. Effective medium parameters for various systems. The lattice constant is 10 mm; in the
case of the tetragonal lattice, this is reduced to s in the direction normal to the plates.

System d (mm) s (mm) μ‖ ε‖ μ⊥

Plates (cubic lattice) 8 — 1.00 1.84 0.74
9.5 — 1.00 3.45 0.47
9.8 — 1.00 5.47 0.32

Plates (tetragonal lattice) 8 6 1.01 2.32 0.64
8 4 1.01 2.73 0.58
9.8 6 1.00 8.07 0.23

Discs (cubic lattice) 8 — 1.00 1.43 0.83

The in-plane permeability μ‖ is always equal to or very close to unity, while that normal
to the plates is lower. We can drive μ⊥ to smaller values by making the plates larger
(increasing d) or by squashing the lattice in the direction normal to the plates (so that it becomes
tetragonal). Combining these approaches gives us a predicted practical range of approximately
0.2 < μ⊥ < 1.

A simple variation on the structure of cubes is to place superconducting spheres on a
lattice. The effective medium is then isotropic, like the lattice of cubes; with a lattice spacing
of 10 mm and spheres of diameter 8 mm, the dispersion relation looks very much like figure 3,
while the phase velocity at ω = 0 is 0.853c0. By squashing the spheres into discs, we return
to an anisotropic system, and are once again able to extract the effective medium parameters
from the dispersion relation. These are listed in table 2; the system behaves qualitatively like
the lattice of plates, although the effect is less pronounced.

It is also interesting to investigate what happens when we put more plates into the unit cell.
We first add one additional plate, at right angles to the first, as shown in figure 5(a); this should
give us a uniaxial anisotropic metamaterial, like the single-plate system. Finally, we add a third
plate, perpendicular to the first two; this system is now isotropic, and we expect that it will
behave in a similar way to the structure of solid cubes. The unit cell of this system is illustrated
in figure 5(b).
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(a) (b)

Figure 5. Unit cells for the (a) two-plate and (b) three-plate systems.

The band structure of the anisotropic two-plate structure is similar to that of the single-
plate system shown in figure 3. The main difference is that there is no mode which follows the
light line; for any orientation of the electric field, there is always an appropriately aligned plate
which can be polarized.

The results for the single-plate systems demonstrate that the plates have very little effect
on an in-plane magnetic field. If we assume that this remains true for the two-plate system then
we may assume that μ⊥ = 1. We use the ‘perpendicular’ label to refer to the direction of the
four-fold symmetry axis of the metamaterial; this is no longer normal to the plates themselves.
With this assumption, we again have enough information to extract the remaining effective
medium parameters. We obtain ε‖ = 1.76, μ‖ = 0.79, and ε⊥ = 2.40 when the dimensions
are d = 8 mm, l = 10 mm. This is exactly the response that one would predict by summing the
contributions of the two sets of plates and neglecting any interaction between them; ε‖ and μ‖
are approximately equal to the corresponding single-plate parameters (ε‖ and μ⊥ respectively),
while ε⊥ represents a polarization close to twice that of ε‖, because both sets of plates can now
contribute.

For the three-plate structure with dimensions d = 8 mm, l = 10 mm, the extracted group
velocity is 0.744c0, which is very close to the value obtained for the solid cube.

In our simulations, we treated the superconducting material as a perfect electrical
conductor rather than a perfect plasma. This should not affect the results at the microwave
frequencies we have been considering. Of course, this also ignores the possibility of tunnelling
between the plates (the Josephson effect).

4. Applications

There are several approaches to cloaking from electromagnetic radiation. Alu and Engheta use
plasmonic resonances [10, 11] to make a subwavelength object invisible. Milton and Nicorovici
also use resonances of a more sophisticated kind [12], but their prescription will only screen
point objects from view; extended objects remain visible, and the scheme is therefore of limited
applicability. However, by employing metamaterials it is possible to specify a more complete
cloaking scheme. Leonhardt [4] has given a recipe that cloaks within the ray approximation.
A similar but more complete formula based on the full Maxwell equations gives an exact
cloak [2], albeit with some complicated specifications for the metamaterials concerned. The
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Figure 6. The proposed magnetic cloak; the shaded region in the centre is hidden from external
magnetic fields. The plates form broken circles (in cross section); the full circles show the ferrite or
amorphous metal.

latter approach is relevant to this paper as it encompasses the screening of a static magnetic
field; this is something that none of the other treatments can address.

To build a magnetic cloak, we need an anisotropic material which is diamagnetic or
paramagnetic depending on the field direction. Our superconducting metamaterials are
diamagnetic in the direction perpendicular to the plates; we can tune the effective permeability
in this direction over a range of values between 0.2 and 1 by adjusting the plate size and spacing.
We need to incorporate a component which will provide an anisotropic paramagnetic response.
This is easily achieved at low frequencies by a simple layered structure.

A metamaterial composed of alternating layers of thickness d1 and d2 with permeability
μ1 and μ2 has an effective permeability

μ‖ = μ1d1 + μ2d2

d1 + d2
, (17)

μ⊥ =
(

μ−1
1 d1 + μ−1

2 d2

d1 + d2

)−1

. (18)

We would like μ⊥ to be close to unity; if we want the cloak to be thin, we need μ‖ to be large.
The obvious way to achieve this is to have one material non-magnetic (μ1 = 1) and the other
highly paramagnetic (μ2 � 1), with d1 � d2. Both materials need to be non-conducting,
to avoid spoiling the superconductor-induced diamagnetism. Some suitable candidates for the
paramagnetic material are to be found among the ferrites, which combine large values of μ

with high resistivity and low hysteresis, as do certain amorphous metals.
As a test, we added two thin (1 mm) layers of a hypothetical non-conducting magnetic

material with μ = 10 to our single-plate unit cell, and carried out the usual simulations. With
d = 9.5 mm, the effective medium parameters are modified in exactly the way we expect: the
material becomes paramagnetic in the plane of the plates (μ‖ = 1.81), while the out-of-plane
diamagnetism is affected only slightly (μ⊥ = 0.53 instead of 0.47). Our metamaterial is now
complete.

The cloak described in (1) is spherical, while our system of superconducting plates is
based on a cubic lattice. However, we can get away with wrapping the cubic system around
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the surface of a sphere as long as the unit cell size is significantly smaller than the radius. By
decreasing the size of the plates or making the gaps larger as we move outwards, we can achieve
the desired variation in μr. Figure 6 illustrates a section through the cloaking structure.

We have taken up the challenge of designing metamaterials that function at very low
frequencies. We have shown that by using superconducting components, it is possible to create
and control anisotropic diamagnetism in this regime; this is one of the essential ingredients of
a magnetic cloak, for which we have presented a practical design.
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